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LETTER TO THE EDITOR 

Diffusion-limited aggregation and regular patterns: fluctuations 
versus anisotropy 

J h o s  KertCsz and Tamis Vicsek 
Research Institute for Technical Physics, HAS, Budapest, POB 76, H-1325, Hungary 

Received 23 December 1985, in final form 23 January 1986 

Abstract. We show that the patterns in diffusion-limited aggregation (DLA) on a lattice 
emerge from the interplay of lattice anisotropy and fluctuations. These fluctuations can 
be damped by Monte Carlo averaging. Increasing its amount, the effective anisotropy 
becomes larger and a crossover from tip splitting typical for continuum DLA to stable tips 
is observed, in analogy with a number of recent experiments. Our simulations suggest the 
following scenario for the transitions which take place as a function of the increasing 
effective anisotropy: disordered patterns -P dendritic structures + needle crystals. It is shown 
that DLA clusters go through the same sequence of transitions as a function of their size. 
Therefore, diffusion-limited aggregates on a lattice are asymptotically not fractals. 

Diffusion-limited aggregation (DLA) (Witten and Sander 1981, see also Herrmann 1986) 
has attracted much interest in recent years. The model shows very rich behaviour in 
spite of its simplicity. Particles are randomly diffusing from a distant circular (spherical) 
boundary in two (or higher) dimensions and they stick to the aggregate (initially a 
particle at the origin) if they hit. By this algorithm random fractal-like clusters are 
constructed. 

Already Witten and Sander (1981), when introducing DLA, mentioned the connec- 
tions of diff usion-limited processes to pattern formation phenomena like dendritic 
crystal growth (Langer 1980). Common to these processes is that the essential physics 
is described by a diffusion type field (the solution of a Laplace equation) with moving 
boundaries. 

In this letter we would like to focus on the following problems. 
(i)  The lattice version of the Laplace equation with moving boundaries can be 

easily solved numerically (see Chen and Wilkinson 1985) and the observed shapes are 
far from that of random DLA clusters: in the case of square lattice a cross-shaped 
pattern grows along the axes. Why are the DLA clusters on a lattice like random fractals 
if the proper solution is a regular pattern? 

(ii) On the other hand, as the size of lattice DLA clusters is increased, the effect of 
lattice anisotropy on their overall shape gradually becomes apparent (Meakin and 
Vicsek 1985, Meakin 1985a, Ball and Brady 1985). Does this mean that the anisotropy 
breaks through and finally even the fractal character of the clusters disappears? What 
is the characteristic size at which this happens and why are the fluctuations no longer 
important there? 

(iii) The role of anisotropy in stabilising the tip of the dendrite was shown in the 
so-called local models (Brower et a1 1983, Ben-Jacob et al 1983) and in the experiments 
by Ben-Jacob er al (1985), Grier et a1 (1985), Sawada et al (1985) and Chen and 
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Wilkinson (1985) where a transition between random DLA-like and dendritic patterns 
was observed. Since Monte Carlo (MC) averaging damps the fluctuations, the effective 
anisotropy can be tuned when growing DLA clusters. What can be learned about 
various growth regions from MC with variable averaging? 

Up to medium sizes ( lo4 particles) the two-dimensional DLA clusters seem to have 
a more or less circular envelope and can be considered as random fractals on lattices 
as well. This is in conflict with the experience that the patterns from the proper solution 
of the original problem on the lattice reflect the strong anisotropy of the grid (KertCsz 
et a1 1985, Chen and Wilkinson 1985). The reason for the discrepancy is that in the 
Monte Carlo solution of the Laplace equation one has to take an average over many 
random walkers. The relevance of this averaging on the patterns formed for related 
models has been pointed out by Tang (1985) and SzCp et a1 (1985). (A different kind 
of averaging was used by Ball and Brady (1985) and Freche et a1 (1985) in order to 
obtain the average cluster envelope for the DLA and Eden models, respectively. 
However, our model enables us to tune the effective anisotropy by changing the amount 
of averaging, and in the limit of infinite averaging we recover the exact solution of the 
lattice Laplace problem with moving boundaries.) 

The procedure is defined as follows. Similar to the usual DLA, particles are randomly 
walking from a distant circular boundary. However, in our case, they do not stick to 
the boundary of the aggregate if they hit it; instead, we count the number n, of walkers 
terminating at site i of the boundary. As soon as one of the n, values reaches a given 
cut-off m, site i is taken as a part of the aggregate (occupied) and new boundary sites 
i f  are born with n,. = 0 for each i ' .  The averaging is controlled by m ;  the larger m is 
the more averaging is done and the smoother the solution. m = 1 is the usual DLA case. 

Figure 1 shows the clusters obtained for several m values. Figure 1( a )  was obtained 
with small averaging ( m  = 2) and the underlying lattice structure is not seen in the 
pattern. When m is increased (figure l (b) ) ,  the pattern becomes quasi-regular with 
well defined main stems in the lattice directions. By further increasing m a needle 
crystal-like pattern emerges from the simulations (figure 1( c)). Such large averaging 
corresponds to a better approach to the solution of the discretised Laplace equation 
on the lattice mentioned where the motion of the boundary is performed in small time 
steps (see Chen and Wilkinson 1985). 

Our pictures, which were obtained in the presence of MC noise, are very similar to 
those by Chen and Wilkinson (1985) where the randomness was introduced in the 
medium (the lattice consisted of tubes of cross sections with a random distribution). 
This shows that the origin of fluctuations is irrelevant; the main point is that they 
decrease the effective anisotropy. 

The simulations presented in this letter suggest that the following scenario of 
transitions takes place in diffusion-controlled pattern formation as a function of the 
increasing effective anisotropy (cf Sander 1985). DLA-like patterns are formed (figure 
l (a))  if the effective anisotropy is small. As the effective anisotropy is increased the 
random DLA geometry crosses over into a dendritic pattern with a regular anisotropic 
structure (figure 1( b ) ) .  Finally, as the effective anisotropy is further enhanced, another 
transition occurs: the most anisotropic pattern, that of needle crystals, grow (figure 
l(c)) .  Such transitions have been observed in the beautiful experiment by Ben-Jacob 
et al (1985) in an anisotropically prepared Hele Shaw cell and in a series of related 
experiments (Chen and Wilkinson 1985, Grier et a1 1985, Sawada et a1 1985) as well 
as in computer simulations (Vicsek 1984, 1985, KertCsz et a1 1985, Chen and Wilkinson 
1985). The reason for such a crossover is that the effective anisotropy stabilises the 
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Figure 1. DLA clusters containing N = 400 particles; patterns grown on the square lattice 
with different averaging. (a)  m = 2 ,  random fractal; ( b )  m =20, dendritic growth; (c)  
m = 400, needle crystals; ( d )  as an illustration a snowflake-like cluster of N = 400 particles 
grown on the triangular lattice with m = 40 is also shown. 

tip of the dendrites against tip splitting if it becomes large enough (local models; 
Brower et a1 1983, Ben-Jacob et a1 1983). 

The way by which we controlled the effective anisotropy smears out these transitions, 
but the regions can clearly be distinguished from each other. The role of averaging 
was to damp fluctuations and thus the effect of lattice anisotropy could become stronger. 

As we shall show below, the role of fluctuations in DLA clusters without averaging 
decreases with growing N .  Therefore the scenario described above should be observed 
as a function of increasing size. The active zone (Ricz and Plischke 1985) of the DLA 

cluster is a good measure of the fluctuations. The strong corrections to the fractal 
dimension D due to the inherent anisotropy of the clusters (Meakin and Vicsek 1985) 
have the effect that the active zone scales with a different effective exponent, v‘, from 
v = 1 / D (Plischke and Racz 1985) and only asymptotically v’ = v even in the off -lattice 
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case (Meakin and Sander 1985). As a consequence of the fact that the relative strength 
of the fluctuations is decreasing with N (  v'< v) the fluctuations are more dominant at 
early stages. This is the reason why, in the case of lattice DLA, these fluctuations 
determine the shape of clusters at the beginning and hinder the appearence of the 
lattice anisotropy. With growing size, the relative strength of fluctuations decays and 
the anisotropy of the grid appears in the pattern. This effect has been seen in the 
recent large-scale computer simulations of the square lattice case (Meakin 1985a, Ball 
and Brady 1985) where clusters with diamond-shaped envelopes were observed at sizes 
with 104-105 particles. 

The following rough calculation illustrates the above ideas. First, we assume that 
the active zone .$ scales differently from the radius r :  

6 = 0.266 and r = 0.693 (1) 

(Ricz and Plischke 1985). Second, we suppose that the limiting form of the envelope 
is a perfect diamond. The first assumption was shown to be asymptotically incorrect 
(Meakin and Sander 1985) and later we will argue that the second is so too, but we 
do not want to apply them for very large clusters. Furthermore we assume that the 
envelopes can be constructed from circular and straight parts (figure 2). 

The deviation from the circular shape is characterised by A, the relative amount 
of the largest distance of the actual envelope from the circle. Then, in order to see 
the relative deviation, A, the fluctuations must obey the following inequality: 

. $ s C r ( l - A )  

where C = 1 -&/2 (see figure 2). Using (1) for 4 and r we get the following expression: 

A( N )  s 1 - N-O."' /1.31 (2) 

showing that in this approximation which deviation belongs to a given size. According 

Figure 2. Schematic shape of the envelope (full line) of DLA clusters of radius r grown 
on the square lattice. The deviation a from the spherical shape becomes visible if the 
fluctuations satisfy (4), where A = a / ( l  -v5/2)r parametrises the effective anisotropy. 
According to our criterion incision starts if x / l -  0.5. 
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to this criterion, an almost unrecognisable small distortion corresponding to a deviation 
A = f appears for N = 800. It is clear that there is no sharp transition from circular to 
diamond shapes. This finding is in full agreement with Meakin’s (1985a) computer 
experiments. Moreover the shape of the function of A( N) is very similar to his R( N )  
which characterises the deviations from circular patterns in his case. 

Our assumptions have only limited applicability. First, (1) was obtained for rela- 
tively small clusters and it is known that the effective exponent v’ increases (Meakin 
and Sander 1985), shifting A downwards for a given N. On the other hand, it is not 
to be expected that the asymptotic shape of the envelope is the diamond on the square 
lattice. If the straight part of figure 2 is long enough, it becomes incised and the 
diamond is unstable. Such a tendency was observed by Vicsek (1984) in a DLA-related 
model. 

According to earlier experience (Vicsek 1984), this incision happens if the straight 
part x of figure 2 becomes approximately half of the distance 1. Using this criterion 
and (2) we get N - 15 000 for the size of DLA clusters on the square lattice, where the 
incision first appears. This is in good agreement with the computer experiments of 
Meakin and Vicsek (1985), Meakin (1985a) and Ball and Brady (1985) where 
anisotropic cluster shapes, and main stems characteristic for dendritic growth were 
observed in very large (N- 104-105) clusters. Of course the above value of the 
characteristic cluster size should be regarded as a rough estimate, since, for example, 
the N value calculated from (2) is very sensitive to small changes in A and the other 
parameters of the problem. 

The recent results about the envelope of large DLA clusters approaching the diamond 
shape (Meakin and Vicsek 1985, Meakin 1985a, Ball and Brady 1985) are the first 
manifestations of the mechanism described above. However, according to our proposed 
scenario, the asymptotic envelope is not the diamond, but dendritic forms should 
appear and, finally, the coarse-grained DLA clusters become like needle crystals. The 
most serious consequence of this picture is that DLA clusters on lattices are asymptoti- 
cally not objects with fractal dimensionality. The fact that Meakin’s (1985a) anisotropy 
parameter R in simulations on the square lattice goes beyond the value characteristic 
for the diamond is already a sign of the effect described. In the latest calculations by 
Meakin (1985b) the DLA clusters on the square lattice tend to be in the shape of a 
cross, already showing the final stage of the above scenario. 

In conclusion, we have shown that as a function of effective anisotropy a scenario 
of transitions should take place in the processes we have considered. This effective 
anisotropy can be tuned in DLA either by the introduction of an averaging procedure 
or by going to larger size, while in the dendritic growth it is controlled by the ratio of 
the anisotropy in the surface tension to the driving force. 

The authors are grateful to P Meakin for communicating his results about the cross-like 
shape of very large DLA clusters prior to publication as well as to L Sander for 
informative correspondence. We thank the referee for sending us a preprint of a related 
paper submitted to Nature by J Nittmann and H E Stanley. 
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